3.680 \(\int \frac{\sqrt{d+e x}}{\sqrt{a+c x^2}} \, dx\)

Optimal. Leaf size=136 \[ -\frac{2 \sqrt{-a} \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{c} \sqrt{a+c x^2} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}} \]

[Out]

(-2*Sqrt[-a]*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a
*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[c]*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0531155, antiderivative size = 136, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {719, 424} \[ -\frac{2 \sqrt{-a} \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{c} \sqrt{a+c x^2} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x]/Sqrt[a + c*x^2],x]

[Out]

(-2*Sqrt[-a]*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a
*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[c]*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2])

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{d+e x}}{\sqrt{a+c x^2}} \, dx &=\frac{\left (2 a \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{\sqrt{-a} \sqrt{c} \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{a+c x^2}}\\ &=-\frac{2 \sqrt{-a} \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{c} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.471626, size = 294, normalized size = 2.16 \[ \frac{2 i \sqrt{d+e x} \left (\sqrt{c} d+i \sqrt{a} e\right ) \sqrt{\frac{e \left (\sqrt{a}+i \sqrt{c} x\right )}{\sqrt{a} e-i \sqrt{c} d}} \left (E\left (i \sinh ^{-1}\left (\sqrt{-\frac{\sqrt{c} (d+e x)}{\sqrt{c} d-i \sqrt{a} e}}\right )|\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )-\text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{-\frac{\sqrt{c} (d+e x)}{\sqrt{c} d-i \sqrt{a} e}}\right ),\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )\right )}{\sqrt{c} e \sqrt{a+c x^2} \sqrt{\frac{\sqrt{c} (d+e x)}{e \left (\sqrt{c} x+i \sqrt{a}\right )}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x]/Sqrt[a + c*x^2],x]

[Out]

((2*I)*(Sqrt[c]*d + I*Sqrt[a]*e)*Sqrt[(e*(Sqrt[a] + I*Sqrt[c]*x))/((-I)*Sqrt[c]*d + Sqrt[a]*e)]*Sqrt[d + e*x]*
(EllipticE[I*ArcSinh[Sqrt[-((Sqrt[c]*(d + e*x))/(Sqrt[c]*d - I*Sqrt[a]*e))]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[
c]*d + I*Sqrt[a]*e)] - EllipticF[I*ArcSinh[Sqrt[-((Sqrt[c]*(d + e*x))/(Sqrt[c]*d - I*Sqrt[a]*e))]], (Sqrt[c]*d
 - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)]))/(Sqrt[c]*e*Sqrt[(Sqrt[c]*(d + e*x))/(e*(I*Sqrt[a] + Sqrt[c]*x))]*
Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.263, size = 396, normalized size = 2.9 \begin{align*} 2\,{\frac{\sqrt{ex+d}\sqrt{c{x}^{2}+a} \left ( -\sqrt{-ac}e+cd \right ) }{e \left ( ce{x}^{3}+cd{x}^{2}+aex+ad \right ){c}^{2}}\sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}}\sqrt{{\frac{ \left ( -cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e+cd}}}\sqrt{{\frac{ \left ( cx+\sqrt{-ac} \right ) e}{\sqrt{-ac}e-cd}}} \left ( \sqrt{-ac}{\it EllipticF} \left ( \sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}},\sqrt{-{\frac{\sqrt{-ac}e-cd}{\sqrt{-ac}e+cd}}} \right ) e+d{\it EllipticF} \left ( \sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}},\sqrt{-{\frac{\sqrt{-ac}e-cd}{\sqrt{-ac}e+cd}}} \right ) c-{\it EllipticE} \left ( \sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}},\sqrt{-{\frac{\sqrt{-ac}e-cd}{\sqrt{-ac}e+cd}}} \right ) \sqrt{-ac}e-{\it EllipticE} \left ( \sqrt{-{\frac{c \left ( ex+d \right ) }{\sqrt{-ac}e-cd}}},\sqrt{-{\frac{\sqrt{-ac}e-cd}{\sqrt{-ac}e+cd}}} \right ) cd \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(1/2)/(c*x^2+a)^(1/2),x)

[Out]

2*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)*(-(-a*c)^(1/2)*e+c*d)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1
/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*((-a*c)^(1/2)*EllipticF((
-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*e+d*EllipticF((-(e*
x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*c-EllipticE((-(e*x+d)*c
/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*(-a*c)^(1/2)*e-EllipticE((-(e
*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*c*d)/e/(c*e*x^3+c*d*x^
2+a*e*x+a*d)/c^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e x + d}}{\sqrt{c x^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x + d)/sqrt(c*x^2 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{e x + d}}{\sqrt{c x^{2} + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(e*x + d)/sqrt(c*x^2 + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d + e x}}{\sqrt{a + c x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(1/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral(sqrt(d + e*x)/sqrt(a + c*x**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e x + d}}{\sqrt{c x^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(e*x + d)/sqrt(c*x^2 + a), x)